
www.manaraa.com

Integrated Computer-Aided Engineering 18 (2011) 365–378 365
DOI 10.3233/ICA-2011-0382
IOS Press

Integration of emerging computer
technologies for an efficient image sequences
analysis

Luisa D’Amorea,∗, Daniela Casaburib, Ardelio Gallettic, Livia Marcellinoc and Almerico Murlid
aUniversity of Naples Federico II, and SPACI, Complesso Universitario M.S. Angelo, Via Cintia, Naples, Italy
bSPACI, c/o Complesso Universitario M.S.Angelo, Via Cintia, Naples, Italy
cUniversity of Naples Parthenope, Centro Direzionale, Is. C4, Naples, Italy
dSPACI and University of Naples Federico II, Complesso Universitario M.S. Angelo, Via Cintia, Naples, Italy

Abstract. Real time image sequences analysis is a challenge. Using high performance computing technologies, a parallel
algorithm for performing data sequence analysis is proposed. We call it pipelined algorithm (PA). The idea underlying the design
of PA comes from the Pipes and Filters design approach: to partition the sequence into ordered subsets and to overlap tasks
execution via pipelining.
Moreover, in order to improve the performance gain of the PA algorithm, tasks’ execution is distributed among multicore
processors. The approach chosen for introducing concurrency takes into account the hierarchical parallelismof system architecture
of multicore multiprocessors. More precisely, three parallelization strategies of PA are considered: first strategy distributes the
execution of each task among the same number of cores employing a fine-grained task parallelism (we call it inter-task data
parallelism), second strategy refers to the execution of each task to one core introducing concurrency at a coarser level (we call it
intra-task functional parallelism), and the last one combines the previous two approaches: it refers to the mapping of each task
to a group of cores (intra-task functional parallelism) distributing task’s execution within each group (inter-task data parallelism).
We prove, both theoretically and experimentally that the third strategy is more effective than the others in terms of speed up
improvement as the data length increases.
As testbed the segmentation of ultrasound sequences is considered. Experiments on real data are carried out using a multicore-
based parallel computer system relying on PETSc (Portable Extensible Toolkit for Scientific computation), a high level software
computing environment.

Keywords: Image sequence, pipe and filters, parallel computing, multicore processors

1. Introduction

Many problems of science and engineering often in-
volve the application of a set of incremental transfor-
mations (i.e. ordered computations) to a finite stream of
data. This set of operations can be thought of as the in-
tegration, composition and cascade of processing tasks
(see, for instance [2,8,9,16–18]). Each task performs
a different step of the overall computation following a

∗Corresponding author: Prof. Luisa D’Amore, Università di
Napoli Federico II, Complesso Universitario Monte S. Angelo, Via
Cintia, 80126 Napoli, Italy. Tel.: +39 081675625; E-mail: luisa.
damore@unina.it.

precise order. The order of execution defines the de-
pendence among tasks and synchronizes their execu-
tion in such a way that the overall computation seems
to be intrinsically sequential. In such cases, a stan-
dard approach may become too expensive, especially
for real-time computations.

In this paper, we propose a parallel algorithm ori-
ented to perform such kind of operations. The idea
underlying this algorithm is a quite general comput-
ing methodology for efficiently performing such kind
of operations: tasks can be seen as vertices in a task
graph and the dependencies from one task to another
can be seen as a directed edge in a task graph. Follow-
ing the Pipe and Filter pattern approach, concurrency

ISSN 1069-2509/11/$27.50 2011 – IOS Press and the author(s). All rights reserved

www.manaraa.com

366 L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis

is introduced along a linear branch in the task graph
by suitably overlapping tasks execution via pipelining
while tasks along parallel branches run concurrently in
parallel. This means that the first task begins to com-
pute as soon as the first data are available. When its
computation is finished the result data is passed to an-
other task, following the prescribed order of the trans-
formations. Then, while this computation takes place
on the data, the first task is free to accept new data. This
pattern is called Pipes and Filters since data is passed
as a flow from one computation stage to another along
a pipeline. The key feature is that data are passed just
one way through the flow structure [5,13]. We call this
algorithm: pipelined algorithm (PA).

Moreover, in order to reduce synchronization over-
heads due to loads imbalance and communications
among tasks, each task of PA is further parallelized
and executed on multicore processors. The approach
chosen for introducing concurrency inside tasks execu-
tion takes into account the hierarchical parallelism of
system architecture of multicore multiprocessors.

More precisely, three parallelization strategies of PA
are considered: first strategy distributes task’s execu-
tion among multiple cores employing a fine-grained
task parallelism (we call this strategy inter-task data
parallelism) of each task, second strategy introduces
concurrency among tasks at a coarser level (intra-task
functional parallelism), and the last one combines the
previous two: it assigns the execution of each task to
a group of cores distributing task’s operations within
each group of cores.

In conclusion, main contribution of this work
is to combine the functional parallelism underlying
pipelined computations and data parallelism underly-
ing parallel computingwith the aim of getting a parallel
algorithm for data sequence analysis. This idea takes
into account the hierarchical parallelism of new sys-
tem architectures based on multicore multiprocessors.
The algorithm was implemented using the high lev-
el software library PETSc(Portable Extensible Toolkit
for Scientific computations) computing environment.
PETSc was mainly chosen because of its optimal man-
agement of both data layout and communications. Fi-
nally, we provide a detailed analysis both theoretic and
experimental of the performance of these three strate-
gies on a multicore multiprocessor.

As case study, we consider the analysis of image
sequences. In particular, we focus on an application
in Medical Imaging: the segmentation of ultrasound
image sequences.

The paper is organized as follows. In next section
is briefly reviewed the Pipe and Filter pattern-oriented

approach. In Section 3, the image sequence analysis
problem is introduced. Then we describe the pipelined
algorithm and the parallelization strategies. Section 4
reports the theoretic performance analysis of these al-
gorithms. In Section 5, the case study aimed to verify
the feasibility of the algorithms is presented. More-
over, the computational environment is presented, in
particular, main features of the high level software li-
brary PETSc are discusses. Experimental results are
described in Section 6, while Section 7 concludes the
paper.

2. Pipes and Filters pattern oriented design

According to [5], a pipeline is an extensible software
framework that defines links together one ore more
steps (or tasks), running them in sequence to complete
a specific process. Each task manipulates input data
and delivers output data to other tasks after executing a
specific processing function. The design of such mech-
anism is often implemented in systems that manipulate
large volume of digital media such as images or streams
of data. Usually, this design is called as Composite
Filter Pattern.

There are several ways to combine filters. The com-
position of filters should be robust enough to allow ad-
dition of new filters and replacement of existing ones.
It should also be flexible enough to support different
ways of combining filters together. We chose to com-
bine filters by plugging them together in a pipeline
using the Pipes and Filters pattern design. Exam-
ples of pipes and filters occur in signal processing do-
mains [10], functional programming [14],and distribut-
ed systems [4]. In a Pipe and Filter style, each compo-
nent (filter) has a set of inputs and a set of outputs. A
component reads streams of data on its inputs and pro-
duces streams of data on its outputs, delivering a com-
plete instance of the result in a standard order. The con-
nectors (pipes) transmit outputs of one filter to inputs
of another.

In conclusion, as show in Fig. 1, main components of
Pipes and Filters pattern approach are the following:

– the filters: data is received via the pipes with which
it is connected, a filter can have any number of
input pipes and any number of output pipes.

– the pipe: it is a directional stream of data, that is
usually implemented by a data buffer to store all
data, until the next filter has time to process it.

– the data source: it can be a static text file, or a
keyboard input device, continuously creating new
data.

www.manaraa.com

L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis 367

Fig. 1. Pipes and Filters Pattern.

– the data sink: it can be another file, a database, or
a computer screen.

This scenario becomes more complex if one (or
more) of the filters needs also the output provided by
two (or more) previous tasks.

Next section describes the deployment of such ap-
proach into an algorithm for image sequence analysis
and its integration with multicore computing technolo-
gies.

3. The pipelined image sequence algorithm

Let us give the following:

Definition 1 [image sequence]: Let D ⊂ � be a
bounded interval. Given t ∈ D, let z(t) ≡ (x(t),
y(t)) ∈ Ω, where Ω = Ωx × Ωy ⊂ �2 is the image
plane.1 The image sequence on D is the piecewise
smooth function:

I0 : t ∈ D → z (t) ∈ Ω → I0(z(t), t) ≡ I0(t) ∈ �
Let us assume that the interval D consists of FN dis-
tinct values, that is:

D = {t1 < t2 < . . . < tFN}
For all t ∈ D and r ∈ N − {∞}, we assume that on
I0(t) we have to perform r tasks, let us say P1, P2, . . .,
Pr, to get Ir(t).

More precisely, given:

P ≡ {P1, P2, . . . , Pr}
we get:

P : I0(t) → Ir(t)

We assume that there is a strong dependence between
these tasks: each task Pi, i = 2, . . . , r acts on the
output provided by the previous one, i.e. Pi−1.
This means that if we set:

P ≡ Pr ◦ Pr−1 ◦ . . . ◦ P1

1The image plane Ω should change with the acquisition time t. In
practice, it is the same at each t because it refers to the rectangular
plane of the image acquisition.

then, it is:

P1 : I0(t) → P1(I0(t)) ≡ I1(t),

P2 : P1(I0(t)) → P2(P1(I0(t))) ≡ I2(t)

.

Pi : Pi−1(Is(t)) → Pi(Pi−1(Is(t)) ≡ Ii(t)

∀i = 2, . . . , r,∀s = 0, . . . , i − 2.
In general, we have that:

Is(t) = Ps(Ps−1(. . . (P1(I0(t))) . . .)

Moreover, we also assume that it may exists a task
needing the output provided by two (or more) previous
tasks.

A straightforward approach to perform P is based
on the execution of the r tasks P1, . . . Pr on each frame
of the sequence I0(t). Schematically, this is described
by the following algorithm:

for k = 1, . . . , FN
for j = 2, . . . , r
Ij(tk) = Pj(Ij−1(tk))

endfor j
endfor k

Image Sequence Algorithm A

Of course the computing time of algorithm A, in-
creases as the numberof frames to process and the over-
all computation may be too expensive for FN → ∞.

To address this issue we propose a new approach to
perform P which is based on a pipelined computation.

Let us consider the ordered subsets Ik
i made of r <

FN subsequent frames of the sequence:

Ik
i = {Ii−(r−1)(tk−(r−1)), . . . , Ii−1(tk−1), Ii(tk)}

k = r, . . . , FN, i = 1, . . . , r.
At step k of the pipelined algorithm, the r tasks act

concurrently onto the subset Ik
i made of r consecutive

frames, as described in the following way:
The main difference between algorithm A and the

pipelined algorithm PA relies on the execution of the r
tasks on a single frame and on the subset Ir

k , respec-
tively. While in algorithm A the tasks are necessarily
performed in a sequential way, one after the previous,
because they act on the same frame, in the pipelined al-

www.manaraa.com

368 L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis

for k = r, . . . , FN
to perform the pipelined
computation on the subset
Ir
k :

for i = 1, . . . , r,
Pi acts onto Ii−1(tk−(i−1))
endfor i

endfor k.

Pipelined Image Sequence Algorithm PA (middle part)

gorithm PA the tasks Pi act concurrently on the ordered
subset Ir

k , because they act on different frames. As we
will describe later, this approach reduces the overall
execution time by a factor depending on the size of Ir

k .
Let us now describe the first r − 1 steps of the

pipelined algorithmPA.As expected,due to the fact that
for k = 1, . . . , r − 1 the number of available frames is
less than the number of tasks to performon these frames
(k < r), only a part of the r tasks Pi i = 1, . . . , r,
may be performed. Indeed, first r − 1 steps repre-
sent the start-up time of the pipelined algorithm. More
precisely, it holds:

for k = 1, . . . , r − 1
for i = 1, . . . , k
Pi acts onto Ii−1(tk−i)
endfor i

endfor k

Start up of Algorithm PA

At step k = FN of the pipelined algorithm PA, Pr

operates onto the frame corresponding to the acquisi-
tion time tFN−(r−1).

This means that it remains to still process r − 1
frames, i.e. the final-stage of the pipelined algorithm.
This is done within further r − 1 steps, as described in
the following:

for k = 1, . . . , r − 1,
Pr acts on Ir−1(tF N−(r−(k+1)))

endfor k.

Final stage of Algorithm PA

Hence, the pipelined computation consists of three
main stages: the start-up, made of r − 1 steps, the
central computation, made of FN − r + 1 steps, and
the final stage, made of r − 1 steps.

In order to reduce synchronization overheads due to
loads imbalance and communications, each task is fur-
ther parallelized and executed on multicore processors.
Taking into account hierarchical parallelism of system
architecture of multicore multiprocessors we introduce
three parallelization strategies:

1. in the first strategy the execution of each task is
distributed among processing cores employing a
fine-grained data parallelism (i.e. parallelism is
introduced the lowest level of PA). We refer to
this strategy as: data parallel pipelined algorithm
(data PPA),

2. in the second strategy execution of each task is
assigned to a single processing core introducing
concurrency at a coarser level of PA. We refer
to this algorithm as: functional parallel pipelined
algorithm (functional PPA),

3. the last one combines the previous two approach-
es. The pipelined algorithm PA is first distributed
among group of multicore. Then, each task of PA
is parallelized within each group. We refer to this
strategy as: hybrid parallel pipelined algorithm
(hybrid PPA).

In Fig. 2we showdataflow of the hybrid PPA algorithm
using 7 computing processors concurrently performing
3 tasks: we note that, first task is assigned to Procs. 0
and 1 (group 1), the second task is assigned to Procs. 2
and 3 (group 2) and the third task is assigned to Procs.
4, 5 and 6 (group 3).

The hybrid PPA approach balances the computation-
al load of each task as for the data parallelism improv-
ing performance gain of the functional PPA.

To indicate data PPA, functional PPA and hybrid PPA
algorithms the following notation is used. Let r be the
number of tasks Pi then:

– data PPA – (nproc, nproc, . . . , nproc)︸ ︷︷ ︸
r

:

each tasks Pi is distributed among nproc process-
ing core.

– functional PPA – (1, 1, . . . , 1)︸ ︷︷ ︸
r

:

each task Pi is assigned to one processing core.
– hybrid PPA – (nproc1, nproc2, . . . , nprocr):

each task Pi is distributed among nproci process-
ing core.

In addition, observe that main difference among the
third strategy and the first two is the core assignment:
while in the first two strategies cores are statically as-
signed, in the last one they are dynamically assigned.

More precisely, to determine the number of core to
assign to execute task Pi, i = 1 . . . , r, that is nproci,
dynamic assignment is based on a preprocessing stage
on the execution time of tasks. This may be done
using a theoretical performance analysis, or using a
database collecting this information or, finally, at run-

www.manaraa.com

L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis 369

Fig. 2. Data flow of the hybrid PPA algorithm on nproc = 7 processors for an image sequence of length FN = 6 involving 3 tasks. Note that, first
task is assigned to Procs. 0 and 1 (group 1), the second task is assigned to Procs. 2 and 3 (group 2) and the third task is assigned to Procs. 4, 5
and 6 (group 3).

time monitoring the total execution time (computations
plus communication time) of Pi.

Let

TPi(nprocj), i = 1, . . . , r

be the execution time of parallel execution of Pi on
nprocj core, taking into account that the number of
available cores is limited, i.e.:

nproci � nproctot ∀i � r

and that the computing machine that we use is dedi-
cated, the number of cores (nproci) to assign to Pi is
such that it provides the minimum total execution time
of Pi, as described below:

for i = 1, . . . , r,
nproci =

= min{j=1,...(nproctot−
∑

1�k�j−1
nprock)}

(TPj
(nprocj))

endfor i.

Dynamic core assignment

Note that, by requiring

j = 1, . . . (nproctot −
∑

1�k�j−1

nprock)

we guarantee that∑
1�i�r

nproci = nproctot

4. Performance analysis

Given the image sequence of length FN , we make
use of the quantities:

– TPi , i = 1, . . . , r
execution time needed to apply Pi,

– Tmax = maxi=1,...,r{TPi},
– T (FN) = FN ·∑r

i=1 TPi

execution time required to execute the r tasks Pi

to a FN-sequence,
– TPi(nprocj), i = 1, . . . , r

execution time of parallel execution of Pi on
nprocj core,

– SPi
nproc

speed up of task Pi on nproc core,
– TPA

execution time of the middle part of PA,
– T fin

PA :
execution time of the final stage of the PA algo-
rithm,

– T in
PA:

execution time of start up of the PA algorithm,
– T fun

PPA(FN) = T in
PA + T fin

PA +
∑FN

k=r Tmax

execution time of functional PPA algorithm (with-
out I/O),

– T data
PPA(FN, nproc)

execution time of data PPA algorithm using nproc
cores to concurrently perform each task,

– Sdata
nproc(FN) = T (FN)

T data
PP A

(FN,nproc)

speed up of data PPA algorithm using nproc cores
to process each task,

– Sfun(FN) = T (FN)

T fun
P P A

(FN)

speed up of functional PPA algorithm,
– Shyb

nproc(FN) = T (FN)
maxi=1,...,rTPi

(nproci)

speed up of hybrid PPA algorithm on nproc pro-
cessing core.

Proposition 1:
Data PPA performance is at most equals to the highest
performance among the r tasks Pi.

www.manaraa.com

370 L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis

It holds that:

Sdata
nproc(FN) � Smax

nproc

= max{SPi
nproc , i = 1, . . . , r}

Proof:

Sdata
nproc(FN) =

T (FN)
T data

PPA(FN, nproc)

=
FN ·∑r

i=1 TPi

FN ·∑r
i=1 TPi(nprocs)

=
FN ·∑r

i=1 TPi

FN ·∑r
i=1

TPi

S
Pi
nproci

� FN ·∑r
i=1 TPi

FN ·∑r
i=1

TPi

Smax
nproc

= Smax
nproc

Then, the highest performance gain we expect from
data PPA equals the maximum number of computing
cores employed for the parallel execution of each task.
Moreover, as it is usual for parallel algorithms imple-
menting data parallelism, as the core number grows,
overheads predominate causing speed-up degradation.
This means that, in case of a fixed-size application, due
to the limited amount of available parallelism, there
exists an optimal number of processing core and each
additional core contributes slightly less or do not.

Concerning second strategy, it can be proved that:

Proposition 2 (functional PPA):
It is:

lim
FN→∞

Sfun(FN) = lim
FN→∞

T (FN)

T fun
PPA(FN)

=
∑r

i=1 TPi

Tmax

Proof:

T (FN) = FN
r∑

i=1

TPi

and

T fun
PPA(FN) = T in

PA + T fin
PA +

FN∑
k=r

Tmax

= T in
PA + T fin

PA + (FN + r − 1) · Tmax

It holds:

lim
FN→∞

T (FN)

T fun
PPA(FN)

=
∑r

i=1 TPi

Tmax

Therefore, as the size of sequence increases, functional
PPA performance depends on the computational cost
of tasks Pi. In particular, it depends on a suitable load
balance among tasks.

Then, it holds:

Corollary 1 (functional PPA):
Assume that ∀ i = 1, . . . , r, TPi = Tmax, that is

execution time of tasks Pi is the same, then:

lim
FN→∞

Sfun(FN) = r

Proof:

T (FN) = r · FN · Tmax

then

lim
FN→∞

Sfun(FN)

= lim
FN→∞

T (FN)

T fun
PPA(FN)

=
r · Tmax

Tmax
= r

This means that, as the size of the sequence increases,
the highest performance gain that we may expect of
functional PPA is equal to r, the number of tasks, and
this occurs if all tasks require about the same execution
time. On the contrary, the lowest performance occurs
if the tasks are not balanced:

Corollary 2 (functional PPA):
Assume that there exist only one among the r tasks,

let us denote P̃
i
, whose execution time is

T
P ĩ

�
∑
i�=̃i

TPi

then

lim
FN→∞

Sfun(FN) � 2

Proof:
r∑

i=1

TPi = T
P ĩ

+
∑
i�=̃i

TPi � T
P ĩ

+ T
P ĩ

= 2 · T
P ĩ

It follows that:

lim
FN→∞

T (FN)

T fun
PPA(FN)

�
2T

P ĩ

TP
ĩ

� 2

www.manaraa.com

L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis 371

Such results suggest us to combine data PPA and func-
tional PPA in order to take advantages of both the first
strategy and the second one. Indeed, using functional
parallelism we overlap the execution of tasks Pi, while
introducing data parallelism inside their computations,
we balance their computing time.

Indeed, it can be proved that:

Proposition 3 (hybrid PPA):
Let 1 � î � r be such that T

P î
(nproĉ

i
) is the

maximum execution time of the r parallel tasks Pi, i.e.

T
P î

(nproĉ
i
) = max

i=1,...,r
TPi(nproci)

=
T

P î

SP î
nproc

î

then it is:

Shyb
nproc =

∑r
i=1 TPi

T
P î

(nproĉ
i
)

� nproĉ
i
· Sfun(FN)

Proof:

Shyb
nproc(FN) =

∑r
i=1 TPi

T
P î

(nproĉ
i
)

�
∑r

i=1 TPi

T
Pî

nproc
î

= nproĉ
i

∑r
i=1 TPi

T
P î

= nproĉ
i
· Sfun(FN)

Following result is a straightforward consequence of
Corollary 2 and Proposition 3.

Corollary 3 (hybrid PPA):
Assume that ∀ i = 1, . . . , r, the execution time of

parallel tasks Pi on nproc cores is the same, that is

TPi(nproci) ≡ Tmax, i = 1, . . . , r

then, if nproc = maxi,...r(nproci):

lim
FN→∞

Shyb
nproc(FN) = nproc · r

Using the hybrid PPA algorithm, the highest perfor-
mance gain we expect with respect to Algorithm A,
as the size of the image sequence increases, occurs
when tasks are balanced and this equals to nproc times
the highest performance gain we expect when employ-
ing the functional PPA algorithm, that is r. In other
words, the hybrid PPA actually may provide a signifi-
cant improvement with respect to the other two strate-
gies. Such results are confirmed by the experiments we
carried out and described in Section 5.

5. A case study

As already said, the PA algorithm may be used for
any applications involving a set of incremental transfor-
mations (i.e. ordered computations) onto a finite stream
of data. In particular, here we show as case study the
segmentation of medical structures from degraded ul-
trasound images [6,7]. We focus on detection and de-
lineation of the expansion of the ventricle chamber at
each frame of ultrasound image sequences. Besides
the presence of the speckle noise that affects ultrasound
images, the problem is to detect and delineate the ex-
pansion of the left ventricle (LV) chamber at each frame
of the sequence (see Fig. 3).

This application consists of r = 3 tasks Pi, i = 1,2,3.
These are: P1 the despeckle plus contrast enhancement,
P2 is the recovery of missing edges via the optic flow
computation, and P3 which is the LV segmentation.
Finally, I3 ≡ I3(C(t)), that is the image brightness of
the LV contour C(t).

Next sections briefly review the mathematical model
of despeckle, of the segmentation task, and of the optic
flow computation. Moreover we describe the depen-
dence among these tasks.

5.1. The de-speckle task P1

Following [3], ∀t ∈ D, consider the PDE:2

∂I (τ, t)
∂τ

= ∇ (Dif (|∇I (τ, t) |)|∇I (τ, t) |)
where

τ ∈ [0, T] , P (t) ∈ Ω, t ∈ D

with zero Neummann boundary conditions:

∂I (τ, t)
∂n

= 0,

where

τ ∈ [0, T] , P (t) ∈ ∂Ω, t ∈ D

and I0 (t) = IS (t) as initial condition (τ = 0).
The diffusion matrix Dif is defined as:

Dif = (w1w2)
(

λ1 0
0 λ2

)(
wT

1

wT
2

)
,

2Here we use the multiscale notation for the image function I(t)
by considering the set of functions I(τ, t), depending on the scale τ ,
each one representing a local approximation of I(t) [1].

www.manaraa.com

372 L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis

Fig. 3. From upper left to bottom right the LVA chamber segmentation on frames 3, 9, 15, 19, 22, 25.

λ1 =

⎧⎪⎨⎪⎩
α
(
1 − (μ1−μ2)

2

s2

)
, (μ1 − μ2)

2

� s2

0, otherwise

and λ2 = α (s and α are constants).
The diffusion reaction matrix is obtained by the eigen-
vectors of the structure matrix:

J = Gσ �
(∇I∇IT

)
where Gσ is the Gaussian function and � is the convo-
lution operator.

5.2. The segmentation task P3

At each t ∈ D, the segmentation function:

u : t ∈ D −→ (P (t), t) ∈ Ω × D

→ u(t) ≡ u(P (t), t, τ) ∈ �2

is obtained by solving the PDE:

∂u (t)
∂τ

=
√

ε + |∇u (t) |2 ∇

·
(

g(|∇Gσ ∗ Ĩ(t)|) ∇u (t)√
ε + |∇u (t) |2

)
ε > 0 is the regularization parameter, g(s) = 1/(1 +
Ks2)(K > 0) is the Perona-Malik edge-indicator
function, Gσ is the Gaussian function, ∗ is the convolu-
tion operator. In our experiments we select K = 0.01
and ε = 0.001. The PDE is equipped with Dirichlet
boundary conditions as follows:

Definition [initial condition]: Let t = t0 be the ac-
quisition time of first frame. Let CYi, i = 1, . . . , n be a
set of cycles, located inside the interesting region, each
one having center ci = (xi (t0) , yi (t0)), then, given
CYi, i = 1, . . . , n we define:

u0 (t0) = max
i=1,n

ωi (x(t0), y(t0))

where:

ωi (x(t0), y(t0)) = ωi (x0, y0))

=

{
1

|(x0,y0))−(xi
0,yi

0)|+1
if(x0, y0) ∈ CYi

1
R+1 if(x0, y0) ∈ Ω − CYi

In subsequent frames, u0 is obtained in automatic way
using functions ωi previously introduced. More pre-
cisely, ∀t > t0, and ∀i = 1, . . . , n to calculate u0 are
considered only those ωi such that:

∀(x(t), y(t)) ∈ CYi, I(x(t), y(t)) � H

where:

H = α|maxΩI(t) − minΩI(t)| + minΩI(t),

α ∈ �.

The key feature of the segmentation model that we em-
ploy for LV border detection is the definition of Ĩ in (2)
inside the edge indicator function g. We integrate the
image to segment with the new position of the contour
computed at previous time. The trajectory of this curve
is provided by the motion of the LV border.

www.manaraa.com

L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis 373

5.3. The motion computation task P2

Let t1, t2 ∈ D, where t2 > t1, and Δt = t2 − t1,
be two consecutive frames of the sequence. If Γ(t1), is
the LV border obtained at t1, we consider

Ĩ(t2) = I (t2) + Γprev (t2)

where:

Γprev (t2) = {(xprev(t2), yprev(t2)) :

(x(t1), y(t1)) ∈ Γ(t1)}
To define Γprev(t2), we first compute Γ at time t1 then,
using the motion trajectory, we predict the position of
the LV border at a subsequent time as follows:

(xprev(t2), yprev(t2))

= (x(t1) + v1(t1)Δt, y(t1) + v2(t1)Δt),

∀ (x(t1), y(t1)) ∈ Γ(t1),

where v1(t1)Δt, v2(t1)Δt are obtained by the motion
trajectory of P (t).

Finally, we integrate this information inside the
frame to segment.

[Motion trajectory]: The motion trajectory of a point
P (t) = (x(t), y(t)) ∈ Ω is the line (or the arc of line)
L, defined by the successive positions of P (t), as t
moves from t1 towards t2. The parametric equation for
L is:

L :
{

Δx = x(t2) − x(t1) = Δt · v1 (t2)
Δy = y(t2) − y(t1) = Δt · v2 (t2)

,

where (v1 (t) , v2 (t)) = (d
dtx(t), d

dty(t)) are the com-
ponents of the motion field, at P (t) ∈ Ω.

Following [20], we find the apparent motion field
(the so-called optical flow), by imposing that the spa-
tial brightness gradient does not change along motion
trajectory.

We get a system of two non linear parabolic (diffu-
sion-reaction) PDE equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u
∂τ = α · div[φ′ (∇u∇uT + ∇v∇vT

)∇u]+
−2 [Ixxu + Iyxv + Itx] · Ixx+
−2[Ixyu + Iyyv + Ity] · Ixy
∂v
∂τ = α · div

[
φ′ (∇u∇uT + ∇v∇vT

)∇v
]
+

−2 [Ixxu + Iyxv + Itx] · Iyx+
−2[Ixyu + Iyyv + Ity] · Ixy

(1)

with zero initial conditions andDirichlet boundary con-
ditions, α > 0 the regularization parameter and

φ′ (s2
)

= ε + (1 − ε) /2
√

1 + s2/λ2

as edge-indicator function.

5.4. The computing environment and PETSc

The PDEs were discretized using the semi implicit
scheme respect to the scale derivatives. This choice
leads to inconditionally stable numerical schemes. For
the spatial discretization, we use finite differences for
despeckling and optic flow models and the (comple-
mentary) finite volumes for the segmentation problem.
At each scale step we have to solve a linear system.
We use the Additive Operator Scheme (AOS) for de-
peckling [21]. Regarding optic flow and segmenta-
tionmodels, we use GMRES iterativemethod equipped
with the algebraic recursive multilevel preconditioner
implemented in the BoomerAMG library [11].

The software has been developed using the high lev-
el software library PETSc (Portable Extensible Toolkit
for Scientific Computations) [15]. PETSc provides a
suite of data structures and routines as building blo-
cks for the implementation of large-scale codes to be
used in scientific applications modeled by partial dif-
ferential equation. PETSc is flexible: its modules, that
can be used in application codes written in Fortran, C
and C++, are developed by means of object-oriented
programming techniques.

The library has a hierarchical structure: it relies on
standard basic computational (BLAS, LAPACK) and
communication (MPI) kernels, and provides mecha-
nism needed to write parallel application codes (see
Fig. 4). PETSc transparently handles the moving of da-
ta between processes without requiring the user to call
any data transfer function. This includes handling par-
allel data layouts, communicating ghost points, gather,
scatter and broadcast operations. Such operations are
optimized to minimize synchronization overheads.

6. Experimental results

Experiments were performed using 4 blade Dell
PowerEdge M6000 each made of 2 processors quad
core (1 blade/node = 2 processors = 8 cores) Intel
Xeon E5410@ 2.33GHz (64 bit) connected by the high
performance network InfiniBand. We carried out many
experiments aimed at monitoring both the performance
of each task and of the pipelined algorithm. We report
here main results.

The starting point is a sequence of FN = 26 frames
of size 300 × 300 (1 cardiac cycle). Then, sequences
of length 51, 101, 201, 401, 801 are considered.

Note that for the case study that we are considering,
tasks are not balanced. Figure 5 shows the execution

www.manaraa.com

374 L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis

Fig. 4. Hierarchical structure of the software library PETSc.

Fig. 5. Execution Time (in seconds and in semi logarithmic scale) of tasks Pi versus the core number. Triangle denotes task P3 (segmentation),
Box denotes task P2 (optic flow), Circle denotes task P1 (despeckle). Sequence length FN = 26.

time of tasks Pi, i = 1, 2, 3 versus the core number.
Optic flow computation task is the cheapest (it needs
about 40 secs on 1 core and the highest performance
is reached using 8 cores with 24.6 secs) and the seg-
mentation is the most time consuming (it requires more
than 700 secs on 1 core and 78 secs with 24 cores).
Therefore, we expect both functional PPA and Data
PPA do not perform good. Hybrid PPA algorithm, in-
stead, may perform better than the previous ones by
suitably parallelizing each task in order to balance their
computational loads. In the following, we report the
performance of AlgorithmA, functional PPA, data PPA
and hybrid PPA algorithms, respectively, measured in
terms of execution time and speed up.

Moreover, to verify if the concurrency helps to hide
the latency and the overheads of communications we

measure the execution frame/rate employed by the al-
gorithm, which is a performance metric usually em-
ployed for any algorithms devoted to process data se-
quences. That is we introduce the throughput defined
as follows:

Definition: The throughput is:

Th =
frame number

time
=

FN

secs

From experimental results we get:

Algorithm A:
When FN = 26, T (FN) = 773.92 sec, while the
frame rate/sec is:

Th =
FN

Tsec
= 0.0336

www.manaraa.com

L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis 375

Fig. 6. Execution time of Data PPA algorithm versus the core number. Sequence length FN = 26.

Fig. 7. Speed up of functional PPA algorithm on (1,1,1) cores as a function of FN.

Functional PPA:
In agreementwith Corollary 2 we expect a low speed

up. As shown in Fig. 6 we get

Sfun(FN) � 2

for FN = 26 up to FN = 801.

Data PPA:
Figure 6 reports the execution time of data PPA al-

gorithm (for task P3) versus the core number. Using
nproc = 24 cores we get the minimum time, i.e.

T data
PPA(FN) = 122.4472 sec,

Sdata
24 (FN) = 6.3

The frame rate is

Th =
FN

Tsec
= 0.212

while the performance gain with respect to Algorithm
A is of 84,17%.

Hybrid PPA:
As already noted, in this application tasks are quite

unbalanced, both in terms of their computational load
and in terms of data communications. In particular,
each task exhibits a communication overhead (the ratio
of communication time over computation time) which
is quite different from the others.

In the hybrid PPA, by introducing concurrency both
on computations and on communications, we get the
right total execution time balancing by distributing the
parallel execution of each task over a different number
of cores.

The number of cores, are determined according to
the dynamic assignment, as described in Section 3. We
perform tasks monitoring at run-time and the subse-
quent core assignment follows this ordering: P3, P2

and P1.
Dynamic assignments gives

nproc3(P3) = 24, nproc2(P2) = 6,

www.manaraa.com

376 L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis

Fig. 8. Total execution time (computations plus communications) in seconds of tasks P1 P2 P3, using (2, 6, 24) cores respectively. Sequence
length FN = 26.

Fig. 9. Execution time (in seconds) of hybrid PPA algorithm versus the node number (1 node = 8 cores). On the x-axis, for each node the three
numbers indicate the core assigned to each task Pi, i = 1,2,3. Sequence length FN = 26.

nproc1(P1) = 2
Feedback of the right load balancing among tasks was
shown in Fig. 8: using 2 cores for task P1, 6 cores for
task P2 and 24 cores for P3 we get about the same total
execution time for the three tasks. It isworth to note that
even though P2 is cheaper than P1 in terms of floating
point computations, for reducing the total execution
time required by P2, because P2 needs to performmore
communications than P1, the total execution time of
P2 is greater than P1 and the optimal number of cores
is greater than that used for P1.

Then, we get

T hyb
PPA(FN) = 84.3395 sec

with a frame rate of Th = 0.314 frame/sec. Speed up
is

Shyb(FN) = 9.1

and performance gain with respect to Algorithm A is
of 89.29%.

Figure 9 shows the execution time of hybrid PPA
algorithm as the core number increases. Observe that
the sum of the cores employed for measuring the per-
formance of the hybrid PPA algorithm is a multiple of 8
because communication network on a node (= 8 cores)
of the parallel machine that we are using is optimized.
On the x-axis the three numbers among parenthesis re-
fer to the cores employed for parallelizing task P1, P2

and P3, respectively. The minimum time is reached
at (2,6,24). By comparing Figs 5 and 9, execution
time of hybrid PPA algorithm at FN = 26 on (2,6,24)
cores equals the execution time of task P3 (segmen-

www.manaraa.com

L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis 377

Fig. 10. Speed up of hybrid PPA algorithm on (2,6,24) cores versus frame number FN.

Fig. 11. Throughput versus the core number. On the x-axis we show the core number, while on the y-axis is it shown Th = frame/rate. Triangle
denote throughput of Algorithm A, Box denote the throughput of data PPA, Star denotes the throughput of functional PPA and circle denotes the
throughput of hybrid PPA. Sequence length FN = 26.

tation task) on 24 cores, confirming that, as expected
from any pipelined computations, in the hybrid PPA
algorithm tasks actually overlap.

To validate the performance gain of this algorithm
as a function of FN we also compute the performance
gain of this algorithm as FN grows. Observe that, in
agreement with Corollary 3, we have

T
P î

(nproĉ
i
) = max

i=1,...,r
TPi(nproci) = TP3(24)

and Shyb � 3 · 24. Figure 10 shows the speed up line
as function of FN .

7. Conclusions

We introduce a pipelined algorithm for performing
a set of ordered tasks on a finite stream of data. Main

idea underlying this algorithm is to perform the tasks
by overlapping the execution of the tasks via pipelin-
ing, along the data sequence and, by concurrently per-
forming the operations of each task.

Concurrency is introduced at two different levels
and with two different granularities: the coarse-grained
parallelism to perform independent tasks and the fine-
grained parallelism within the execution of a task. We
analyze the performance of three parallelization strate-
gies concluding that the hybrid strategy, which com-
bines coarse and fine-grained parallelism, that is data
and functional parallelism of the pipelined algorithm.
We conclude that as data length increases speed up
scales as nproc×r where nproc is the maximum num-
ber of core assigned to tasks and r is the number of
tasks.

www.manaraa.com

378 L. D’Amore et al. / Integration of emerging computer technologies for an efficient image sequences analysis

As case study, the segmentation of ultrasound se-
quence is considered. Performance of this approach is
discussed in terms of execution time, speed up and al-
so using the number of frame per second (throughput)
that measures the rate at which data are processed. Us-
ing this approach, the throughput scales of about 90%
with respect to that of any sequential computation (see
Fig. 11 for a sequence of FN = 26 frames).

References

[1] L. Alvarez, P.L. Lions and J.M. Morel, Image Selective
Smoothing and Edge Detection by nonlinear Diffusion II,
SIAM J Numerical Analysis 29 (1992), 845–866.

[2] D. Anastasia and Y. Andreopoulos, Software designs of image
processing tasks with incremental refinement of computation,
IEEE Trans Image Process 19(8) (2010), 2099–2114.

[3] K.Z. Bbbd-Elmoniem, A.M. Youssef and Y.M Kadah, Real-
Time Speckle Reduction and Coherence Enhancement in Ul-
trasound Imaging via Nonlinear Anisotropic Diffusion, IEEE
Trans on Biomedical Engineering 49(9) (2002), 997–1012.

[4] M.R. Barbacci, C.B. Weinstock and J.M. Wing, Programming
at the processor-memory-switch level. In Proceedings of the
10th International Conference on Software Engineering, (Sin-
gapore), IEEE Computer Society Press, April 1988, pp. 19–
28.

[5] F. Buschmann, K. Henney and D.C. Schmidt, Pattern-Oriented
Software Architecture Volume 4: A Pattern Language for
Distributed Computing, (2007) Kindle Edition.

[6] D. Casaburi, L. D’Amore, L. Marcellino and A. Murli, Real
Time ultrasound image sequence segmentation on multicores,
Parallel Computing: From Multicores and GPU’s to Petascale,
Advances in Parallel Computing B. Chapman, F. Desprez,
G.R. Joubert, A. Lichnewsky, F. Peters and T. Priol, eds, (Vol.
19), 2010, pp. 185–192.

[7] D. Casaburi, L. D’Amore, L. Marcellino and A. Murli, Ultra-
sound Image Segmentation via Motion Estimation, proceed-
ings of ENUMATH 2009, June 29–July 3, Uppsala, Sweden,
LNCS, Springer–Verlag, 2010.

[8] W.B.Chen and C. Zhang, A Hybrid Framework for Protein Se-
quences Clustering and Classification Using Functional Sig-
nature Motif Information, Integrated Computer-Aided Engi-
neering 16(4) (2009), 353–365.

[9] L. D’Amore, L. Marcellino and A. Murli, Image sequence
inpainting: a numerical approach for blotch detection and
removal via motion estimation, JCAM 198(2) (2007), 396–
413.

[10] N. Delisle and D. Garlan, Applying formal specification to
industrial problems: A specification of an oscilloscope, IEEE
Software, September 1990.

[11] V.E. Henson and U.M. Yang, BoomerAMG: A parallel alge-
braic multigrid solver and preconditioner, Applied Numerical
Mathemetics 41(1) (2002), 144–177.

[12] Y. Gousseau and J.M. Morel, Are natural images of bounded
variation, SIAM Journal of Mathematical Analysis 33 (2001),
634–648.

[13] C. Isaacson, SoftwarePipelines and SOA:Releasing the Power
of Multi-Core Processing, 2008, Kindle Edition.

[14] G. Kahn, The semantics of a simple language for parallel
programming, Information Processing, 1974.

[15] http://www.msc.anl.gov/petsc/petsc-as.
[16] W. Mahdi, S. Werda and A.B. Hamadou, A Hybrid Approach

for Automatic Lip Localization and Viseme Classification to
Enhance Visual Speech Recognition, Integrated Computer-
Aided Engineering 15(3) (2008), 253–266.

[17] M. Rizzi, M. D’Aloia and B. Castagnolo, Computer Aided De-
tection of Microcalcifications in Digital Mammograms Adopt-
ing a Wavelet Decomposition, Integrated Computer-Aided En-
gineering 16(2) (2009), 91–103.

[18] A. Sánchez, C.A.B. Mello, P.D. Suárez and A. Lopes, Au-
tomatic line and word segmentation applied to densely line-
skewed historical handwritten document images, Integrated
Computer Aided Engineering 18(2) (2011), 125–142.

[19] A. Sarti and G. Citti, Subjective surface and Riemannian mean
curvature flow graphs, Acta Math Univ Comeniamae 70(1)
(2001), 85–104.

[20] J. Weickert and C. Shnorr, A Theoretical Framework for Con-
vex Regularizeds in PDE-Based Computation of Image Mo-
tion, TR 13/2000, Computer Science Series, (2000).

[21] J. Weickert and B.M. ter Haar Romeny, Efficient and Reliable
Schemes for Nonlinear Diffuzion Filtering, IEEE Trans on
Image Processing 7(3) (1998), 398–409.

www.manaraa.com

Copyright of Integrated Computer-Aided Engineering is the property of IOS Press and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.

